Lista 10. Homología con Coeficientes

Introducción y ejemplos

- 1. Calcular $H_1(\mathbb{R}P^n; \mathbb{Z}_n)$ para $n \geq 2$.
- 2. ¿Cómo cambia la sucesión exacta del par $(M, \partial M)$ dado por la banda de Möbius M y su frontera ∂M (último ejemplo de la clase 19)

$$H_1(\partial M) \xrightarrow{i_*} H_1(M) \xrightarrow{j_*} H_1(M, \partial M) \xrightarrow{\partial_*} H_0(\partial M) \xrightarrow{i_*} H_0(M)$$

cuando se usa homología con coeficientes en \mathbb{Z}_2 o \mathbb{R} ?

3. Calcular el primer grupo de homología del complejo simplicial L_k (ejercicio 9, Lista 7), con coeficientes en \mathbb{R} y \mathbb{Z}_n , para $n \geq 2$.

Producto tensorial

- 4. Probar que el producto tensorial de dos grupos abelianos libres es un grupo abeliano libre.
- 5. Sean $a \in A$ y $b \in B$ elementos de orden infinito. Probar que $a \otimes b \in A \otimes B$ tiene orden infinito. (Sugerencia: Si $n(a \otimes b) = 0$, existen subgrupos finitamente generados $A_0 \subset A$ y $B_0 \subset B$ tales que $a \in A_0$, $b \in B_0$ y $n(a \otimes b) = 0$ en $A_0 \otimes B_0$).
- 6. Probar las siguientes afirmaciones:
 - (a) La función $\lambda: A \times B \to A \otimes B$ dada por $\lambda(a,b) = a \otimes b$, es bilineal.
 - (b) Para toda función bilineal $\varphi: A \times B \to C$ existe un único homomorfismo de grupos abelianos $\psi: A \otimes B \to C$ tal que $\varphi = \psi \circ \lambda$. (Interpretación: λ es la función bilineal universal a partir de la cual se obtiene cualquier otra bilineal $\varphi: A \times B \to C$.)
- 7. Sea $\gamma:A\times B\to G$ una función bilineal fija, tal que para toda función bilineal $\varphi:A\times B\to C$ (con C artbitrario) existe un único homomorfismo $\psi:G\to C$ que satisface $\varphi=\psi\circ\gamma$. Probar que $G\cong A\otimes B$. (Caracterización del producto tensorial a través de su propiedad universal.)

El funtor Tor

8. Probar que $Tor(A, G) \cong Tor(Tor(A), Tor(G))$ para grupos abelianos finitamente generados (esto es cierto para grupos abelianos arbitrarios, pero no se sigue del Tma. 10.3.6).

1

- 9. Probar las siguientes afirmaciones:
 - (a) Si A es finitamente generado, entonces $Tor(A, \mathbb{Q}) = 0$ y $Tor(A, \mathbb{R}) = 0$.
 - (b) $Tor(\mathbb{Z}_n, \mathbb{Q}/\mathbb{Z}) \cong \mathbb{Z}_n$.
 - (c) Si A es un grupo abeliano finito, entonces $Tor(A, \mathbb{Q}/\mathbb{Z}) \cong A$.

El teorema de coeficientes universales

13. Sea $f: C \to D$ un morfismo de complejos de cadenas libres tal que $f_*: H_q(C) \to H_q(D)$ es un isomorfismo para todo $q \in \mathbb{Z}$. Probar que

$$(f \otimes \mathrm{id})_* : H_q(C \otimes G) \longrightarrow H_q(D \otimes G),$$

es un isomorfismo, para todo grupo de coeficientes G.

14. Construir un morfismo de complejos $f: C \to D$ tal que $f_* = 0: H_q(C) \to H_q(D)$ para todo q, pero de modo que $(f \otimes \mathrm{id})_* \neq 0: H_q(C \otimes G) \to H_q(D \otimes G)$ para algún G y algún q. (Sugerencia: Se puede elegir C, resp. D, de modo que las cadenas sean cero salvo en un par de dimensiones, resp. en una sola dimensión.)

En los tres ejercicios siguientes C es un complejo de cadenas libre.

- 15. Probar que si $H_q(C)$ es finitamente generado y $H_q(C \otimes \mathbb{Z}_p) = 0$ para todo primo p, entonces $H_q(C) = 0$.
- 16. Probar que si $H_{q-1}(C)$ es abeliano libre, entonces el homomorfismo natural

$$\lambda: H_q(C) \otimes G \to H_q(C \otimes G)$$

es un isomorfismo.

17. Probar que si $H_{q-1}(C)$ es finitamente generado, entonces $\lambda: H_q(C) \otimes \mathbb{R} \to H_q(C \otimes \mathbb{R})$ es un isomorfismo.

Grupos de homología con coeficientes

- 18. Probar que $H_i(L(p,q);\mathbb{R}) \cong \mathbb{R}$ para j=0,3 y $H_i(L(p,q);\mathbb{R})=0$ en otro caso.
- 19. Probar que $H_2(N_g; \mathbb{R}) = 0$ y $H_2(S_g); \mathbb{R}) \cong \mathbb{R}$ en otro caso.
- 20. Probar que

$$H_q(\mathbb{R}\mathrm{P}^n; \mathbb{R}) \cong \begin{cases} \mathbb{R} & \text{si } q = 0, \\ \mathbb{R} & \text{si } q = n \text{ (y } n \text{ impar)}, \\ 0 & \text{en otro caso.} \end{cases}$$

Ejemplos y aplicaciones

- 21. Sea X un CW-complejo finito.
 - (a) Para $q \ge 0$, sea α_q el número de q-celdas de X. Probar que $\sum_q (-1)^q \alpha_q = \chi(X)$.
 - (b) Usando descomposiciones celulares adecuadas, probar que:

$$\chi(S_g) = 2 - 2g, \qquad \chi(N_g) = 2 - g, \qquad \chi(D^n) = 1,$$

$$\chi(S^n) = 1 + (-1)^n, \qquad \chi(\mathbb{R}P^n) = \frac{1}{2}(1 + (-1)^n),$$

$$\chi(\mathbb{C}P^n) = \chi(\mathbb{H}P^n) = n + 1.$$

- (c) Justificar por qué cualquier descomposición celular de S^2 no puede contener celdas de dimensión > 2. Deducir el *Teorema de Euler para poliedros:* Si X es un CW-complejo homeomorfo a S^2 , entonces $\alpha_0 \alpha_1 + \alpha_2 = 2$.
- (d) Sea $\tilde{X} \to X$ un recubrimiento de k hojas. Probar que \tilde{X} es un CW-complejo con $k \cdot \alpha_q$ celdas de dimensión q. Concluir que $\chi(\tilde{X}) = k \cdot \chi(X)$.
- 22. Probar que dos CW-complejos finitos X y Y del mismo tipo de homotopía, tienen ambos un número par de celdas o un número impar de celdas (Sugerencia: Probar que si $\alpha_0, \alpha_1, \ldots, \alpha_n \in \mathbb{Z}$, entonces los enteros $\alpha_0 + \alpha_1 + \ldots + \alpha_n$ y $\pm \alpha_0 \pm \alpha_1 \ldots \pm \alpha_n$ tienen la misma paridad).
- 23. Sea $p: S^n \to \mathbb{R}P^n$ el recubrimiento (de dos hojas) dado por la proyección canónica. Probar que homomorfismo inducido $p_*: H_n(S^n; \mathbb{Z}_2) \to H_n(\mathbb{R}P^n; \mathbb{Z}_2)$ es trivial.
- 24. Probar que si X y Y son CW-complejos finitos, entonces $\chi(X \times Y) = \chi(X)\chi(Y)$.
- 25. Usar el ejercicio 21 (d) para probar que:
 - (a) S^2 solo puede ser recubrimiento de sí mismo (una hoja) y de $\mathbb{R}P^2$ (dos hojas).
 - (b) Si $\tilde{X} \to X$ es un recubrimiento con un número finito de hojas, en donde uno de los espacios es un toro, entonces el otro espacio es un toro o una botella de Klein.
 - (c) Si S_h es un recubrimiento de S_g y $g \neq 1$, entonces (h-1) es divisible por (g-1) y el cociente es el número de hojas de dicho recubrimiento.
 - (d) Extender estas afirmaciones al caso de superficies no orientables.

(Sugerencia: Usar el teorema de clasificación de superficies.)