Lista 5. El Grupo Fundamental

Propiedades generales del grupo fundamental

- 1. Sea $w: I \to X$ una trayectoria y $0 = t_0 < \cdots < t_n = 1$ una partición del intervalo [0,1]. Para $i = 1, \ldots, n$ sea $w_i: I \to X$ la trayectoria $w_i(t) = w((1-t) \cdot t_{i-1} + t \cdot t_i)$. Muestre que $[w] = [w_1] \cdot [w_2] \cdot \ldots \cdot [w_n]$.
- 2. Para $u: I \to X$ trayectoria de x_0 a x_1 , sea $u_+: \pi_1(X, x_1) \to \pi_1(X, x_0)$ el isomorfismo de cambio de punto base.
 - (a) Mostrar que si $u \simeq v$ rel ∂I , entonces $u_+ = v_+$.
 - (b) Sean $x_0, x_1 \in X$, con X arco-conexo. Mostrar que $\pi_1(X, x_0)$ es abeliano si y solo si los isomorfismos u_+ y v_+ son iguales para todas las trayectorias u, v de x_0 a x_1 .
- 3. Sea $S^1 \vee S^1 = (S^1 \times 1) \cup (1 \times S^1)$ y $\nu : S^1 \to S^1 \vee S^1$ el mapeo $\nu(z) = (z^2, 1)$ si $z \in D^1_+$ y $\nu(z) = (1, z^2)$ si $z \in D^1_-$. Mostrar que:
 - (a) Las sigs. funciones son homotópicas: (id, c) $\circ \nu \simeq (c, id) \circ \nu \simeq id : S^1 \to S^1$ rel 1, donde $c: S^1 \to S^1$ es el mapeo constante $c(S^1) = 1$ y id = id $_{S^1}$.
 - (b) Las sigs. funciones son homotópicas: (id, s) $\circ \nu \simeq (s, id) \circ \nu \simeq c: S^1 \to S^1$ rel 1, donde $s: S^1 \to S^1$ es el mapeo $s(z) = z^{-1}$.
 - (c) Las siguientes son homotópicas: $(\nu \vee id) \circ \nu \simeq (id \vee \nu) \circ \nu : S^1 \to S^1 \vee S^1 \vee S^1$ rel 1.
- 4. Usar el ejercicio anterior para probar que $[S^1,1;X,x_0]$ es un grupo con el producto dado por $[\varphi][\psi] = [(\varphi,\psi) \circ \nu]$ y que la biyección $[S^1,1;X,x_0] \to \pi_1(X,x_0)$, del Teorema 5.1.11, es un isomorfismo.
- 5. Sea $f: \partial I^2 \to X$ un mapeo y para j=0,1 consideremos las trayectorias $u_j, v_j: I \to X$ dadas por: $u_j(s) = f(s,j)$ y $v_j(t) = f(j,t)$. Probar que las siguientes equivalentes:
 - (i) f se puede extender a un mapeo $F: I^2 \to X$.
 - (ii) $f:\partial I^2\to X$ es nul-homotópico.
 - (iii) $u_0 \cdot v_1 \simeq v_0 \cdot u_1 \text{ rel } \partial I$.
- 6. Demostrar que si X un grupo topológico con elemento identidad e, entonces $\pi_1(X, e)$ es abeliano. (Sugerencia: Para $u, v : (I, \partial I) \to (X, e)$ sea $F : I^2 \to X$ el mapeo F(s, t) = v(t)w(s), donde el lado derecho es el producto en X. Usar ele ejercicio anterior).
- 7. Probar que los espacios proyectivos $\mathbb{C}P^n$ y $\mathbb{H}P^n$ son simplemente conexos.

El grupo fundamental de S^1

- 8. Probar las siguientes afirmaciones:
 - (a) Sea $w:(I,\partial I)\to (S^1,1)$ un lazo basado. Entonces la clase $[w]\in\pi_1(S^1,1)$ es un generador (de este grupo) si y solo si el índice de w es ± 1 .
 - (b) Si $v:(I,\partial I)\to (S^1,1)$ es un homeomorfismo relativo, entonces v tiene índice ± 1 y por lo tanto [v] es un generador de $\pi_1(S^1,1)$.

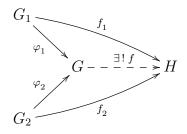
- 9. Demostrar que para todo homomorfismo $\varphi: \pi_1(S^1 \times S^1, z_0) \to \pi_1(S^1 \times S^1, z_0)$ existe un mapeo $f: (S^1 \times S^1, z_0) \to (S^1 \times S^1, z_0)$ tal que $f_\# = \varphi$. Más aún, probar que cuando φ es un isomorfismo, f se puede elegir como un homeomorfismo.
- 10. Sea $T^n = S^1 \times \ldots \times S^1$ el toro de dimensión n. Probar que si $n \neq m$ entonces $T^n \not\approx T^m$.
- 11. Sea M una banda de Möbius y $f: S^1 \to \partial M$ un homeomorfismo. Notemos que la trayectoria $w: I \to M$ dada por $w(t) = f(e^{2\pi it})$, representa un elemento $\beta \in \pi_1(M, x_0)$, donde $x_0 = f(1) \in \partial M$. Mostrar que $\beta = \alpha^2$ para un generador apropiado $\alpha \in \pi_1(M, x_0) \cong \mathbb{Z}$. Concluir de aquí que ∂M no es un retracto de M.
- 12. Probar las siguientes afirmaciones:
 - (a) Si $x_0 \in S^1 \subset D^2$, entonces $D^2 \setminus x_0$ es simplemente conexo.
 - (b) Si $x_0 \in \mathring{D}^2$, entonces $D^2 \setminus x_0$ no es simplemente conexo.
 - (c) Todo homeomorfismo $f: D^2 \to D^2$ mapea S^1 sobre S^1 .

Esto prueba el Teorema 1.1.18 en el caso n=2 (Tma. de la invarianza de la frontera).

El teorema de Seifert - Van Kampen

- 13. Probar las siguientes afirmaciones sobre el orden de los elementos de $G_1 * G_2$:
 - (a) Si $g \in G_1 * G_2$ tiene orden finito, entonces $g \in G_1$ ó $g \in G_2$ ó bien g es conjugado a un elemento de G_1 ó G_2 . (Sugerencia: Inducción sobre n, la longitud de la representación reducida de la palabra g).
 - (b) Si $G_1 \neq 1$, $G_2 \neq 1$, entonces $G_1 * G_2$ contiene elementos de orden infinito.
- 14. Probar que si $H_1 \subset G_1$ y $H_2 \subset G_2$ son subrgrupos, entonces $H_1 * H_2$ es un subgrupo de $G_1 * G_2$ (pero no todos los subgrupos de $G_1 * G_2$ son de esta forma, ver el ejercicio siguiente y el Tma. 6.9.5).
- 15. Sean $a, b \in \mathbb{Z}/2 * \mathbb{Z}/2$ los generadores del primer y segundo factor, respectivamente. Probar que el subgrupo generado por el elemento ab tiene indice 2 y por lo tanto es un subgrupo normal de $\mathbb{Z}/2 * \mathbb{Z}/2$. Concluya que dicho subgrupo no es de la forma $H_1 * H_2$, con $H_i \subset G_i = \mathbb{Z}/2$.
- 16. Se define el centro de un grupo G como el conjunto $Z(G) = \{x \in G \mid xg = gx \ \forall g \in G\}$. Mostrar que Z(G) es un subrupo normal de G. Probar que si $G_1 \neq 1$ y $G_2 \neq 1$ entonces $Z(G_1 * G_2) = 1$.
- 17. Sean $\varphi_1: G_1 \to G$ y $\varphi_2: G_2 \to G$ homomorfismos de grupos con la siguiente propiedad: Para todo grupo H y todo par de homomorfismos $f_1: G_1 \to H$ y $f_2: G_2 \to H$, existe un único homomorfismo $f: G \to H$ tal que $f_1 = f \circ \varphi_1$ y $f_2 = f \circ \varphi_2$.

Probar que $G \cong G_1 * G_2$.



- 18. Probar que la suspensión ΣX de un espacio arco-conexo X es simplemente conexo. (Sugerencia: Expresar a ΣX como la unión de dos abiertos simplemente conexos con intersección arco-conexa).
- 19. Sean M una n-variedad conexa, con $n \geq 3$, $f: D^n \to M$ un encaje (homeomorfismo sobre su imagen) y $\mathring{D}_1 = \{f(x) \mid 0 \leq ||x|| < \frac{1}{2}\}$. Pongamos $M^* = M \setminus \mathring{D}_1$. Probar que $\pi_1(M^*) \cong \pi_1(M)$. (Sugerencia: Expresar $M = U \cup V$ como en 5.3.12 con $V \approx \mathring{D}^n$, $U \cap V \simeq S^{n-1}$ y $M^* \subset U$ un retracto por deformación.)
- 20. Sean M y N dos n-variedades conexas, con $n \ge 3$. Probar que el grupo fundamental de la suma conexa es: $\pi_1(M \# N) \cong \pi_1(M) * \pi_1(N)$. (Sugerencia: Usar el ejercicio anterior.)

Aplicaciones del teorema de Seifert - Van Kampen

- 21. Probar que $\pi_1(S^1 \vee S^1, x_0) = \mathbb{Z} * \mathbb{Z}$, el producto libre de dos grupos cíclicos infinitos (ambos denotados por \mathbb{Z}). Representar a toda palabra reducida de $\mathbb{Z} * \mathbb{Z}$ como la clase de homotopía de un lazo basado en $S^1 \vee S^1$.
- 22. Sea $Y_m = S^1 \vee ... \vee S^1$ (m sumandos). Probar que $\pi_1(Y_m, x_0) = \mathbb{Z} * ... * \mathbb{Z} = F_m$, el producto libre de m copias de \mathbb{Z} . Generalizar la representación de las palabras reducidas (del ejercicio anterior) a este caso.
- 23. Sea $Z_m = \mathbb{R}^2 \setminus \{x_1, \dots, x_m\}$ donde $x_1, \dots, x_m \in \mathbb{R}^2$ son puntos distintos (Z_m est unívocamente determinado por m, salvo homeomorfismo). Mostrar que:
 - (a) Z_m contiene un retracto fuerte por deformación homeomorfo a Y_m .
 - (b) $\pi_1(Z_m) \cong F_m$.

Aquí F_m y Y_m son como en el ejercicio anterior. Demostrar además que Z_m y Z_n no son homeomorfos si $m \neq n$; para esto se puede probar antes que los grupos F_m y F_n no son isomorfos si $m \neq n$. (En caso de no tener idea, ver: 5.5.7)

- 24. Calcular los grupos fundamentales de:
 - (a) $S^1 \vee S^2$, $S^1 \times \mathbb{R}P^2$, $\mathbb{R}P^2 \vee \mathbb{R}P^2$, $\mathbb{R}P^2 \times \mathbb{R}P^2$.
 - (b) $\mathbb{R}^3 \setminus K_0$ donde K_0 es la circunferencia dada por $x^2 + y^2 = 1$, z = 0. (Comparar con el ejercicio 18, lista 2).
 - (c) $(S^1 \times S^1) \cup e^2$, donde la 2-celda está pagada por el mapeo $z \mapsto (z^2, z^3)$.
- 25. Probar que el grupo fundamental de la unión en un punto $X \vee Y$ de dos CW-complejos conexos, tales que $\pi_1(X) \neq 1 \neq \pi_1(Y)$, tiene centro trivial y no es abeliano.
- 26. Sea Y la unión de las circunferencias $(x-2)^2+z^2=1$ y $(x-4)^2+z^2=1$ en el plano xz en \mathbb{R}^3 y $X\subset\mathbb{R}^3$ el espacio que se obtiene por la rotación Y alrededor del eje z (X es la unión de dos toros con una circunferencia en común). Muestre que $\pi_1(X)$ no es abeliano.

Grupos libres y grafos

- 27. Sea G un grupo libre de rango \geq 2. Muestre que:
 - (a) El centro de G es trivial.
 - (b) G no contiene elementos de orden finito (distintos de la identidad).
 - (c) Si $x, y \in G$ son tales que xy = yx, entonces existe un elemento $z \in G$ tal que x y y son potencias de z.
- 28. Probar que si G_1 y G_2 son grupos abelianos, entonces $(G_1 * G_2)_{ab} \cong G_1 \oplus G_2$.
- 29. Sean G un grupo con al menos dos elementos $g, g_1 \neq 1$ y H un grupo con al menos un elemento $h \neq 1$. Sea $K \subset G * H$ el subgrupo generado por $x = ghg^{-1}h^{-1}$ y $x_1 = g_1hg^{-1}h^{-1}$. Probar que K es un grupo libre, generado libremente por $\{x, x_1\}$.
- 30. Sea X el grafo que consiste de los vértices y las aristas de un n-simplejo. Exhibir un árbol maximal para X y calcular $\pi_1(X)$.
- 31. Probar que todo CW-complejo de dimensión 1 tiene el tipo de homotopía de un wedge de círculos $\bigvee_{\alpha} S^1$ o de un punto.

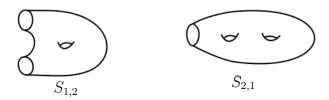
Presentaciones de grupos

- 32. Probar las siguientes afirmaciones:
 - (a) $\langle x, y \mid xyx^{-1}y^{-1} \rangle \cong \mathbb{Z} \oplus \mathbb{Z}$.
 - (b) $\langle x, y \mid x^n, xyx^{-1}y^{-1} \rangle \cong \mathbb{Z}/n \oplus \mathbb{Z}$.
 - (c) $\langle x, y \mid x^m, x^n, xyx^{-1}y^{-1} \rangle \cong \mathbb{Z}/d \oplus \mathbb{Z}$ donde $d = \operatorname{mcd}(m, n)$.
 - (d) $\langle x, y \mid x^m, y^n \rangle \cong \mathbb{Z}/m * \mathbb{Z}/n$.
 - (e) $\langle x, y \mid xy^m \rangle \cong \mathbb{Z}$.
 - (f) $\langle x, y \mid xy^m, xy^n \rangle \cong \mathbb{Z}/d$ donde $d = \operatorname{mcd}(m, n)$.
 - (g) $\langle x, y \mid x^2 y^3, x^3 y^4 \rangle = 1$.
- 33. Sea $G_{p,q} = \langle x, y \mid x^p y^q \rangle$ con $p,q \geq 2$. Muestre que:
 - (a) El elemento $x^p = y^{-q} \in G_{p,q}$ pertenence al centro de $G_{p,q}$ y el subgrupo H generado por dicho elemento es normal en $G_{p,q}$.
 - (b) $G_{p,q}/H \cong \mathbb{Z}/p * \mathbb{Z}/q$.
 - (c) H es el centro de $G_{p,q}$ (Sugerencia: (b) y ejercicio 16).
 - (d) $G_{p,q}$ es libre de torsion (Sugerencia: (b) y ejercicio 13).
 - (e) Si $2 \le p \le q$, $2 \le r \le s$ y $G_{p,q} \cong G_{r,s}$ entonces p = r y q = s. (Sugerencia: ejercicios 13 y 28).
- 34. Sea G el grupo en el ejercicio 26, lista 1 (grupo de la botella de Klein). Probar que $G = \langle s, t \mid tst^{-1}s \rangle$, donde $s, t : \mathbb{R}^2 \to \mathbb{R}^2$ son los homeomorfismos definidos en dicho ejercicio.

Ejemplos de grupos fundamentales

- 35. Probar que para $g \ge 1$, el grupo fundamental de S_{g+1} se puede expresar como un producto amalgamado de la forma $\pi_1(S_{g+1}) = \langle \alpha_1, \beta_1, \dots \alpha_g, \beta_g \mid \rangle *_A \langle \alpha_{g+1}, \beta_{g+1} \mid \rangle$. Describir A y dar los detalles. Concluir que $\pi_1(S_{g+1})$ es libre de torsión (el caso $\pi_1(S_1)$ es claro). Dar una expresión analoga para $\pi_1(N_g)$ y demostrar que $\pi_1(N_g)$ es libre de torsión para $g \ge 2$ (para g = 1 esto no es cierto).
- 36. Sea $S_{g,n}$ la superficie S_g menos n discos abiertos disjuntos, de modo que $S_{g,n}$ es una superficie con n componentes frontera, cada una homeomorfa a S^1 (ver 1.4.7).

Ejemplos:



Probar que:

- (a) $\pi_1(S_{g,n}) = \langle \sigma_1, \dots, \sigma_n, \alpha_1, \beta_1, \dots, \alpha_g, \beta_g \mid \prod_{j=1}^n \sigma_j \prod_{k=1}^g (\alpha_k \beta_k \alpha_k^{-1} \beta_k^{-1}) \rangle$, donde los σ_j están dados por las curvas frontera (unidas al punto base por curvas auxiliares).
- (b) Ningúno de los σ_j es una potencia de algún otro elemento, lo que también suele expresarse como: "ninguna curva frontera es potencia de alguna otra curva".
- (c) Enunciar los resultados correspondientes para las superficies no orientables N_g . Nótese que hay una excepción a (b).
- 37. Este ejercicio explica como contruir una n-variedad $(n \ge 4)$ con un grupo fundamental dado $G = \langle s_1, \ldots, s_k \mid r_1, \ldots, r_\ell \rangle$. Justifique heurísticamente los siguientes afirmaciones:
 - (a) La suma conexa $M = (S^1 \times S^{n-1}) \# \dots \# (S^1 \times S^{n-1})$ de k copias de $S^1 \times S^{n-1}$ (para $n \ge 4$) tiene grupo fundamental $\pi_1(M) = \langle s_1, \dots, s_k \mid \rangle$.
 - (b) Para todo $r \in \pi_1(M)$ existe un encaje $f: S^1 \times D^{n-1} \to M$ tal que el lazo $t \mapsto (f(e^{2\pi it}), 0)$ representa la clase de homotopía r.
 - (c) $M_1 = M \setminus f(S^1 \times D^{n-1})$ y M tienen grupos fundamentales isomorfos.
 - (d) Pegar $D^2 \times S^{n-2}$ y M_1 por sus fronteras usando el homeomorfismo $(x, y) \mapsto f(x, y)$, para obtener una variedad M' con $\pi_1(M') \cong \langle s_1, \ldots, s_k \mid r \rangle$.
 - (e) Iterando esta construcción, se obtiene una variedad con un grupo fundamental dado $G = \langle s_1, \ldots, s_k \mid r_1, \ldots, r_\ell \rangle$

5